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CREATING A PROTOCOL FOR OPERATIONAL
EARTHQUAKE FORECASTING

Operational Earthquake Forecasting (OEF) “comprises procedures for gathering and disseminating authoritative information
about the time dependence of seismic hazards to help communities prepare for potentially destructive earthquakes.”
(Jordan et al, 2011)

The 2016 Central Italy sequence is a long and complex sequence consisting of multiple damaging earthquakes, which
occurred from days to months after the first devastating event. This shows the importance of capturing the time dependence
in the seismic rate so as to provide more accurate information about seismic risk.

In order to improve any future operational efforts, a timeline should be
defined for the development of time-dependant and testable forecast models.
Depending on the quality of available data, we can perform:

A) “Preliminary knowledge” models (using data available from minutes to
few hours after a main event)

B) “Intermediate knowledge” models (using intermediate data updates that
bring refinements to the first estimations)

C) “Advanced knowledge” models (using data of the best quality)



MODEL A — “PRELIMINARY KNOWLEDGE"
- Preliminary ML, depth and focal mechanism;
- Uniform slip model

- Receivers modelled with the same geometry
of the source and unknown reference depth
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MODEL A — “PRELIMINARY KNOWLEDGE"
- Preliminary ML, depth and focal mechanism;
- Uniform slip model

- Receivers modelled with the same geometry
of the source and unknown reference depth
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RATE-AND-STATE FRICTION THEORY

(TRANSLATING STRESS CHANGE INTO
SEISMICITY RATE CHANGE)

Q No stress perturbation?
SEISMICITY RATE = BACKGROUND RATE

After a stress perturbation from a large event...

NEW SEISMICITY RATE at each node point:
Q — Stress change

Proportional to: - Background rate

S—

Secular shear stressing rate

Inversely proportional to: Normal stress

Coulomb stress

Seismicity rate (R)
r

State variable (y)
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MODEL A - Forecast from 24™ August to 29t October (Rate-and-State friction theory)

®* Reference rate evaluated from 1990 to 2016 with ®* Wide range of 10 possible shear stressing rate taken from literature
magnitude of completeness = 2.5, on a 2x2 km spatial grid; ®* Normal stress = 0.1 MPa/year;
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MODEL A - Forecast from 30t October to 17t January (Rate-and-State friction theory)

Reference rate evaluated from 1990 to 2016 with
magnitude of completeness = 2.5, on a 2x2 km spatial grid;
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CREATING A PROTOCOL FOR OPERATIONAL
EARTHQUAKE FORECASTING

Operational Earthquake Forecasting (OEF) “comprises procedures for gathering and disseminating authoritative information
about the time dependence of seismic hazards to help communities prepare for potentially destructive earthquakes.”
(Jordan et al, 2011)

The 2016 Central Italy sequence is a long and complex sequence consisting of multiple damaging earthquakes, which
occurred from days to months after the first devastating event. This shows the importance of capturing the time dependence
in the seismic rate so as to provide more accurate information about seismic risk.

In order to improve any future operational efforts, a timeline should be
defined for the development of time-dependant and testable forecast models.
Depending on the quality of available data, we can perform:

A) “Preliminary knowledge” models (using data available from minutes to
few hours after a main event)

B) “Intermediate knowledge” models (using intermediate data updates that
bring refinements to the first estimations)

C) “Advanced knowledge” models (using data of the best quality)




- Final estimation on Mw, depth, focal mechanism
and fault dimensions.

- Best available version of the slip model (finite fault
model);

- Receivers modelled with the same geometry of the
source and with weighted reference depths between
2-12 km
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- Final estimation on Mw, depth, focal mechanism and
fault dimensions.

- Best available version of the slip model (finite fault
model);

- Receivers modelled with the same geometry of the
source and with weighted reference depths between
2-12 km
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MODEL C - Forecast from 24t August to 29t October (Rate-and-State friction theory)

Reference rate evaluated from 1990 to 2016 with
magnitude of completeness = 2.5, on a 2x2 km spatial grid;
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MODEL C - Forecast from 30t October to 17t January (Rate-and-State friction theory)

Reference rate evaluated from 1990 to 2016 with

magnitude of completeness = 2.5, on a 2x2 km spatial grid;
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FORECAST TIME SERIES: FROM AUGUST 24 TO OCTOBER 29

No. of events (M>2.5)
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No. of events (M>2.5)

FORECAST TIME SERIES: FROM OCTOBER 30 TO JANUARY 17
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version of slip
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FORECAST TIME SERIES: AFTER JANUARY 18

[ [ [ [ I [ [

B \Vodel A - Area between the max and min no. of events
—=== Model A mean no. events
B Model C - Area between the max and min no. of events
—a— Model C mean no. events
-g==[\l0del| C best forecast

O number of observations

11 11

\ FATAR . o 3
o o *" ¥ o (.;‘&."Sf.‘s y “i “'\ k‘.\

. 1 J J 1 J 1
160 180 200 220 240 260 280 300 320

T (days after August 24th)

_-—-—-_-_-___-

No. of events (M>2.5)
d
:

‘;-.._,




CONCLUDING REMARKS

AND FUTURE DEVELOPMENTS

1. The case study of the last Central Apennines sequence is ideal to quantify the influence of data quality in
preliminary forecast efforts in a well-instrumented region;

2. During the early post-disaster phases, our preliminary forecasts are affected by limitations and high errors;
3. Assoon as we can use updated geological and seismological data, we can compute more informed models

which enhance the accuracy of our forecasts.

Expected developments:

* Inclusion of intermediate models (“models B”) to better observe the evolution of the forecasts with time, as
well as at least one more informed model (“model D”) which takes into account a real geological model for the
receivers.

 Statistical evaluation of the models and comparison with empirical/statistical models (i.e. ETAS);



“ESSENTIALLY, ALL MODELS ARE
WRONG, BUT SOME ARE USEFUL"

GEORGE E. P. BOX (1987)
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